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ABSTRACT

Computational Fluid Dynamics (CFD) analyses of
axisymmetric circular-arc boattail nozzles operating
off-design at transonic Mach numbers have been
completed. These computations span the very diffi-
cult transonic flight regime with shock-induced sepa-
rations and strong adverse pressure gradients.
External afterbody and internal nozzle pressure dis-
tributions computed with the Wind code are com-
pared with experimental data. A range of
turbulence models were examined, including the
Explicit Algebraic Stress model. Computations have
been completed at freestream Mach numbers of 0.9
and 1.2, and nozzle pressure ratios (NPR) of 4 and 6.
Calculations completed with variable timestepping
(steady-state) did not converge to a true steady-state
solution. Calculations obtained using constant
timestepping (time-accurate) indicate less variations
in flow properties compared with steady-state solu-
tions. This failure to converge to a steady-state solu-
tion was the result of using variable time-stepping
with large-scale separations present in the flow. Nev-
ertheless, time-averaged boattail surface pressure
coefficient and internal nozzle pressures show rea-
sonable agreement with experimental data. The SST
turbulence model demonstrates the best overall
agreement with experimental data.

COMPUTATIONAL STUDY OF AXISYMMETRIC OFF-DESIGN
NOZZLE FLOWS

INTRODUCTION

Computational Fluid Dynamics (CFD) analyses of
an axisymmetric convergent-divergent boattail nozzle at
transonic freestream conditions have been completed to
determine the capabilities of Reynolds-Averaged
Navier-Stokes (RANS) calculations to predict details of
off-design nozzle performance. These studies were per-
formed in support of future high-speed nozzle studies
for NASA’s Next Generation Launch Technology Pro-
gram. External and internal nozzle pressure distribu-

tions computed with the Wind1 code are compared with
experimental data obtained in the NASA Langley 16-

Foot Transonic Tunnel2. These computations span the
difficult transonic flight regime, in which the flow
includes shock-induced separations and strong adverse
pressure gradients. At transonic freestream Mach num-
bers, nozzle boattail drag can significantly affect overall
propulsion system performance. Results have been
obtained by employing a range of turbulence models
available in Wind, including the newly-implemented
Explicit Algebraic Reynolds Stress model, in order to
assess the capabilities of Wind and its turbulence mod-
els to predict these complex flow characteristics.
Understanding these effects will aid design for better
performance and lower drag in future nozzles.

In this study, computations have been completed at
different freestream Mach numbers and nozzle pressure
ratios (NPR) on one nozzle configuration, which is rep-
resented by the schematic shown in Figure 1. This noz-
zle, referred to as the “Configuration 2” geometry of

Carson and Lee3, is a converging-diverging nozzle.
The nozzle operating points considered here are at Mach
0.9 and NPRs of 4 and 6, and Mach 1.2 operating at an
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However, due to the algebraic nature of the resulting
expressions, EASM is not computationally more expen-
sive than linear two-equation models.

The various turbulence models in Wind employ
corrections to make them more broadly adaptable to var-
ious geometries and conditions. The k-ε model has two
corrections, namely the Sarkar Compressibility

Correction10 and the Variable Cµ correction11. The
Sarkar approximation, which is designed to improve the
prediction of compressible jet flows, is used for all com-
putations shown in this paper. However, results were
obtained with the variable Cµ option both OFF and ON.
When activated, this option reduces turbulent viscosity
in regions where the production of turbulent kinetic
energy is significantly larger than the rate of dissipation.
The S-A model was run with and without the stream-
wise curvature/rotation correction.

The S-A solutions were started from scratch with
the TVD factor set to a value of 2, although setting it to
a factor of 3 accelerated convergence. SST solutions
were started from S-A, and run for an additional 10,000
to 20,000 iterations. The k-ε calculations were started
from the SST solutions. The EASM was started from a
k-ε solution. Thedq limiter was used to prevent sudden
overshoots in all solutions, but the more unsteady mod-
els (EASM and k-ε) required it at initialization.

The inflow conditions were specified using the
Freestreamand Arbitrary Inflow boundary conditions.
The Freestream BC is used external to the nozzle and
the Arbitrary Inflow is used at the nozzle inflow plane.
Total pressure and total temperature were specified and
held constant at the inflow boundaries. The static pres-
sure at the outflow boundary was specified to the value
of the freestream pressure in subsonic conditions, and
supersonic points were extrapolated.

Axisymmetric, structured, computational grids
were generated for all cases using Pointwise, Inc’s

GRIDGEN12 software (Figures 3(a), 3(b) and 3(c)).
Due to the axisymmetric nature of the problems exam-
ined here, images presented in this report are mirrored
about the symmetry axis in the figures for clarity. Zonal
boundaries were organized in such a way that very com-
plex regions of the flow (such as shear layers) do not run
parallel to the zonal boundaries. Average y+ values on
the viscous walls were specified to be approximately 1.
The convergence criterion consisted of monitoring noz-
zle thrust for changes with iteration, adequate reduction
of the L2 Norm residual, and mass flow conservation
within the nozzle.

The computational domain extends radially to
about 19 nozzle diameters and extends downstream

NPR of 4. Carson and Lee investigated the internal and
external pressure distributions on a wide range of noz-
zles at various Mach numbers and pressure ratios using
an interchangeable mechanism on the test rig installed
in the Langley 16-Foot Transonic Tunnel. The rig used
to obtain experimental results is shown in Figure 2.

Carlson4 subsequently completed numerical predictions
of this work at Mach 0.9 and NPRs of 4, 5, and 6 using
the PAB3D CFD code.

NUMERICAL MODEL

Calculations were obtained with Wind, a general
purpose 3-D Computational Fluid Dynamics (CFD)
code which solves the turbulent, time-dependent, Rey-
nolds-Averaged Navier-Stokes (RANS) equations using
a node-centered finite volume approach. Wind is the
production solver of the NPARC Alliance, a joint code
development group of NASA Glenn Research Center,
USAF Arnold Engineering Development Center, and
the Boeing Company. In addition to perfect gas capabil-
ities, Wind can also solve the equations which govern
equilibrium air, non-equilibrium air and frozen gas
chemistry. Wind version 5 was used for the steady-state
calculations and a test version with improved second-
order time-stepping was used for the time-accurate cal-
culations. The solver was configured to run with the fol-
lowing specifications:

• Axisymmetric flow
• Constant timestepping (time-accurate) and variable

timestepping (steady-state)
• Second-order Roe upwind scheme with modifica-

tion for stretched grids, and second-order time-
marching

• One-equation Spalart-Allmaras5 (S-A), Two-equa-

tion Menter Shear Stress Transport6 (SST), Chien

k-ε7, and Rumsey-Gatski8,9 k-ε Explicit Algebraic
Reynolds Stress (EASM) turbulence models

• Perfect gas, air, γ = 1.4

The Spalart-Allmaras turbulence model works well
for attached and separated wall bounded flows such as
the flow around airfoils. The Chien k-ε model was
developed to handle shear layer flows or jet flows. The
SST model combines the k-ω formulation to treat inner
regions of wall boundary layers with a transformed k-ε
formulation to handle the outer, mixing regions of the
flow. The EASM model has been recently installed in
Wind to better predict compressible jet flows. It is
derived from a simplified form of the Reynolds Stress
transport equation which eliminates the need for the
Boussinesq approximation and enables the model to
predict anistropy among the Reynolds normal stresses.

2NASA/TM—2003-212876 



static pressure,Fa is the actual gross thrust extracted
from the Wind solution, andma is the actual mass flow
extracted from the Wind solution.

Ideal mass-flow rate and thrust are determined from
the isentropic flow equations and are used to normalize
the calculated thrust and mass flow:

where pt and Tt are the nozzle total pressure and temper-
ature, respectively, andγ is the ratio of the specific heats.

During the course of the computations, variations in
inflow properties were seen in the steady-state calcula-
tions requiring subsequent analysis using time-accurate
calculations to determine the significance of the varia-
tions. As a result, variations in flow properties of the
steady-state and time-accurate solutions across time (or
iterations) are represented by the Standard Deviation
(SD). The SD gives an indication of where across the
surface and to what degree a variation of a particular
flow quantity occurs. Themean values and SD of a flow
quantity are given by:

whereN is the number of solution files to average,x is a
point of interest on the surface, andvar represents the
flow quantity or variable of interest (either Cp or p/pt in
this analysis).

DESCRIPTION OF CASES AND RESULTS

Results are presented as pressure distributions on
the internal and external nozzle surfaces and Mach num-
ber contours of the entire flowfield. The pressure distri-
butions are compared to experimental data for several
NPRs and freestream Mach numbers. Designed to oper-

about 50 nozzle diameters. The jet plume zone is 100
points axially and 223 vertically. The inside of the noz-
zle is 200 axial points by 75 radially, and the freestream
around the boattail portion is 200 axially by 60 radially.
The forebody is 185 axially by 60 radially. The maxi-
mum nozzle outside diameter D is 15.24 cm and the
entire assembly is about 157 cm (62 inches) long. Sig-
nificant improvement in the solution (over older, more
unrefined grids) was found by adding 91 points axially
to the external surface (to get the current 200) and by
moving the upper domain boundary more than twice the
distance away from the nozzle (to about 142 cm). The
minimum peak in Cp on the upper surface was then seen
to be predicted more accurately. All results are shown
with this improved grid. The downward curvature of the
boattail occurs approximately at an x/D of 0.

A grid dependence study has been conducted on
three different grid levels, the coarse being a total of
108,155 points. The medium grid contained 30% more
grid points, and the fine grid contained 60% more grid
points than the coarse grid. Plots of the mean values of
pressure coefficient (Cp) over the boattail surface (Fig-
ure 4) indicate that the coarse grid is sufficient to capture
the pressure distributions. As a result, the coarse grid
was used to obtain the results shown in this paper.

Wind was configured to run in multi-processor
mode on an SGI Origin 2000. Steady-state solutions
took approximately 20 total CPU hours at CFL numbers
between 0.6 and 0.8. Time-accurate solutions took
approximately 296 CPU hours at a timestep of 1 nano-
second.

POST PROCESSING

In order to provide a direct comparison with experi-
mental data, results are represented by Cp curves on the
external surface, and curves of p/pt (static pressure
divided by the nozzle total pressure) on the internal sur-
face. In addition, gross thrust is normalized by ideal
thrust, and mass flow normalized by ideal mass flow.
The pressure coefficient Cp used in this analysis is
defined as the local pressure minus the freestream pres-
sure divided by the freestream dynamic pressure. The
gross thrust is obtained through application of the
momentum theorem to a control volume surrounding the
nozzle:

whereu is the axial flow velocity component,∆A is each
cell’s computational area,ρ is the density,p is the local

ṁa ρu∆A∑=

Fa ρu u( ) p p∞–( )+[ ]∆A∑=

ṁi Pt Athroat
γ
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STEADY-STATE CALCULATIONS

Figure 6(a) shows a qualitative view of Mach num-
ber contours at the off-design NPR=4, Mach 0.9 around
the entire body, while Figure 6(b) shows details near the
nozzle exit. Figure 7(a) shows the mean Cp profiles on
the upper surface. Figure 7(b) shows the analogous
curves for the internal surface, plotted using p/pt. In
Figure 7(a), the k-ε solution with Cµ ON shows the clos-
est agreement to minimum peak on the upper surface
near x/D=0.0, while it overpredicts the pressure near
x/D=1.0, compared with the S-A and SST models.
Turning the Cµ option OFF slightly improved the pres-
sure distributions over having it ON (near x/D of 1.0).
The sudden jump in pressure around x/D of 0.7, as seen
in Figure 7(b), results from flow passing through the
shock that contacts the nozzle wall (Figure 6(b)). Solu-
tions exhibiting more forward shock locations ( e.g., for
the EASM, k-ε models) result in higher pressure at the
exit, creating a higher adverse pressure gradient field for
the top surface, causing separation to move upstream, as
indicated in Figure 7(a) by the higher Cp values at x/D
of 1.0.

This case exhibited the most apparent unsteadiness,
which results from a shock-induced separation on the
inner nozzle surface at an x/D of about 0.7. For NPR
values lower than 6, the internal surface separates, and
this separation region interacting with the shock causes
a low-frequency unsteady behavior on the top of the
boattail surface itself, causing the pressure to oscillate.
The external pressure distribution (Figure 7(a)) exper-
ences a fair amount of unsteadiness as indicated by the
SD plot on the external surface shown in Figure 8(a).
The EASM model generates the highest values of SD.
This apparent unsteadiness is related to the shockwave/
boundary layer interaction and the resultant magnitude
of the separation. The k-ε and EASM solutions showed
the highest peaks in SD indicating the most variation in
flow properties. The SST and SA models are better able
to calculate the separation region.

Figure 8(a) shows that turning the Cµ option OFF
reduced the apparent unsteadiness considerably (low
values of SD). When the Cµ option is ON, the turbulent
viscosity is indirectly reduced or limited in those
regions, and has less damping effect on the apparent
unsteadiness. The internal surface pressure (Figure
7(b)) also exhibits variation in pressure due to unsteadi-

Static Pressure 8.69 psi 32.43 psi

Table 1: Nozzle flow conditions

Freestream Nozzle Inflow

ate at an NPR of 21.23, the “Configuration 2” nozzle
was run at off-design NPRs of 4 and 6. The relatively
shallow downward slope (3.8 degrees) of the external
surface results in attached flow across the entire upper
surface. The inner nozzle is wedge shaped (linear wall
contour) with a half angle of 13.18 degrees. This results
in separation on the inner surface for all NPRs below 6.
The separation location moves forward (towards the
nozzle throat) as the NPR is lowered.

An on-design solution (NPR=21.23) for the “Con-
figuration 2” nozzle is shown in Figure 5 and serves as a
reference, and will not be discussed in detail. In all
cases, the forebody structure used in the experiment is
modeled in the CFD computations, which influences the
external nozzle boattail by adding upstream effects, pri-
marily well-developed boundary layers.

Generally, all solutions showed flow accelerating
supersonically through the nozzle, followed by the for-
mation of a sophisticated array of shocks and expansion
waves. More significantly, as a result of the nozzles
operating at lower-than-design NPRs, this complex set
of expansion and shock waves resulted in large-scale
flow separation and unsteadiness near the nozzle exit,
also affecting the pressure distribution on the top sur-
face. The pressure values for both the steady-state and
time-accurate solutions on the internal and external sur-
faces were time- or iteration-averaged across several
thousand iterations to obtain the mean values. These
values are compared to experimental data.

The three cases are examined in more detail below.
These consist of results at Mach 0.9 and NPRs of 4 and
6, and Mach 1.2 operating at an NPR of 4. In addition
to the steady-state calculations using all turbulence
models common to all three cases, the Mach 0.9, NPR 4
case consists of an additional time-accurate calculation
using the SST model.

MACH 0.9,NPR 4

The flow conditions can be seen in Table 1. First,
the steady-state solution will be discussed, followed by
discussion of a time-accurate computation using the
SST turbulence model.

Table 1: Nozzle flow conditions

Freestream Nozzle Inflow

Mach No. 0.9 0.2

Total Temp 579.6 R 540.0 R

Total Pressure 14.7 psi 34.77 psi

4NASA/TM—2003-212876 



second (10-9). A “characteristic time” tc for a fluid par-
ticle to move one nozzle diameter can be defined as:

whereDexit is the exit diameter of 13.2 cm (0.433 ft) and
uexit is 2,000 ft/sec. The total time∆T passed over N
iterations is:

where∆t is 10-9 seconds. From this, one can see that at
458,000 iterations, a fluid particle has moved 2.11 noz-
zle diameters downstream.

Figures 10(a) and 10(b) show the mean pressure
distributions external and internal to the nozzle for the
steady-state solution, experimental values and time-
accurate solution. The mean values from the time-accu-
rate solutions are very close to the steady-state solu-
tions, as seen in these figures. Additionally, the SD
plots (Figures 11(a) and 11(b)) indicate that the varia-
tion of pressure is small compared to what was observed
in the steady-state Standard Deviation plots (Figures
8(a) and 8(b)). In Figure 10(a), the time-accurate solu-
tion predicts a slightly higher value of Cp near x/D of
0.5 compared with the steady-state solution. Figure
10(b) indicates that the time-averaged steady-state solu-
tion on the internal surface is the same as that of the
time-accurate solution. Furthermore, Figure 9 demon-
strates that even the instantaneous streamlines for the
the steady-state and time-accurate solutions give almost
identical results. The time-accurate numerics appear to
remove the numerical instabilities associated with the
unsteady separation and enable a nearly converged solu-
tion to be obtained. In light of this, the time-accurate
solutions suggest that the non-realistic variation in pres-
sure seen in the steady-state calculations is partially the
result of using a variable timestep (constant CFL num-
ber). Similar phenomenon have been observed in calcu-
lations with separated flow on multi-element airfoil

calculations at high lift13, and in calculations of a lobed

nozzle with a large separated base region14.

MACH 0.9,NPR 6

The flow conditions for this case are listed in Table
3. The Mach number contours are shown in Figure 12,
and indicate less dramatic formation of expansion and
shock waves near the nozzle exit. The normal shock has
moved beyond the nozzle exit, and has decreased in its
severity. A much smaller region of separated flow on
the inner wall is present near an x/D of 0.95 compared
with the Mach 0.9, NPR 4 case. Pressure distributions

ness as seen in Figure 8(b). The spikes in unsteadiness
occur around the location where the shock contacts the
wall, a possible source of the pulsing driving the
unsteadiness on the upper surface. As on the top sur-
face, turning the Cµ option OFF with k-ε reduced the
unsteadiness, possibly by not limiting the amount of tur-
bulent viscosity in that region.

Figure 9 shows the instantaneous streamlines for
each turbulence model that bound the separation region
just inside the nozzle exit. The S-A solution with
streamwise curvature correctionON showed the least
separation off the inner surface, while the EASM model
predicted the most separation. The relative positions of
streamlines seen in Figure 9 is probably related to the

relative magnitudes of Cp values found near x/D of 1.0
in Figure 7(a). Table 2 shows the normalized thrust and
massflows for each turbulence model versus experimen-
tal data. Actual thrust and massflow are normalized by
the ideal quantities. The thrust values for the k-ε and
EASM models are higher than indicated by experiment
while the S-A models are lower, and SST provides the
best overall prediction.

TIME -ACCURATE CALCULATIONS

Because the variable-timestep (steady-state) solu-
tions indicated significant variation in flow properties
(failure to converge to a steady-state solution) internal
and external to the nozzle, an additional time-accurate
calculation using the SST model was completed for this
case to investigate these effects. The time-accurate
solution was restarted from the “steady-state” solution,
and run for 458,000 iterations at a timestep of 1 nano-

Table 2: Comparison of normalized massflow and
thrust for various turbulence models. “cc” refers to
the S-A rotation correction.

Mach 0.9,
NPR 4

Normalized
Thrust

Normalized
Massflow

Experiment 0.8063 0.9700

S-A (cc OFF) 0.7810 0.9584

S-A (cc ON) 0.7717 0.9550

SST 0.8019 0.9622

EASM 0.8587 0.9740

k-ε (Cµ OFF) 0.8456 0.9721

k-ε (Cµ ON) 0.8569 0.9714

∆T N∆t=

tc

Dexit
uexit
--------------=
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MACH 1.2,NPR 4

The results for this case resulted in a significant
change in the appearance of the internal and external
flowfield (in terms of Mach number contours and pres-
sure contours) compared to the subsonic case at the
same NPR. The flow conditions are listed in Table 5.
The Mach number contours are shown in Figure 15 and

indicate less dramatic formation of expansion and
shockwaves near the exit compared to the Mach 0.9
cases. The normal shock structure and severity is simi-
lar to the Mach 0.9, NPR 6 case. This suggests that
increasing the freestream speed has the equivalent effect
of increasing the nozzle pressure ratio (through the
effect of flow entrainment). The separated flow region
on the inner nozzle wall is very small. Figures 16(a)
and 16(b) show the pressure distributions on the external
and internal surfaces respectively. All turbulence mod-
els slightly underpredict the pressure at an x/D of 0.15
as seen in Figure 16(b) (more so than in the Mach 0.9,
NPR 6 case). Similar to the subsonic cases, the k-ε
model predicts an early separation region, but the
EASM model predicts its location slightly better than in
the subsonic cases. The predicted pressures along the
external surface (from x/D of 0.125 to 0.9) were over-
predicted slightly by all turbulence models as seen in
Figure 16(a). The EASM model predicts the pressure
distribution well towards x/D of 1.0 (nozzle exit); but
the SST model provides the best overall prediction of
both. Figures 17(a) and 17(b) show the external and

k-ε (Cµ OFF) 0.8858 0.9546

k-ε (Cµ ON) 0.8894 0.9534

Table 5: Nozzle flow conditions

Freestream Nozzle Inflow

Mach No. 1.2 0.2

Total Temp 579.6 R 540.0 R

Total Pressure 14.7 psi 24.25 psi

Static Pressure  6.062 psi 23.59 psi

Table 4: Comparison of normalized massflow and
thrust for various turbulence models. “cc” refers to
the S-A rotation correction.

Mach 0.9,
NPR 6

Normalized
Thrust

Normalized
Massflow

for the internal and external surfaces are shown in Fig-
ures 13(a) and 13(b). All turbulence models slightly
underpredict the pressure distribution on the internal
surface at an x/D of 0.15 as seen in Figure 13(b). The k-
ε and EASM models predicted the separation point ear-
lier than the other models as seen in Figure 13(b).
Again, the SST model predicts the pressure distribution
the best across both the internal and external surfaces.
Figures 14(a) and 14(b) show the SD for the external
and internal surfaces, respectively. The S-A model
shows the highest variations in SD compared with the
NPR 4 case on the external surface (Figure 14(a) vs Fig-
ure 8(a)), and EASM the lowest. The internal surface
SD plot, Figure 14(b), showed similar trends between
the NPRs 4 and 6 cases, with the k-ε model having the
highest values, and S-A the lowest. The variable Cµ
option did not seem to affect the damping of the
unsteadiness for this case. Table 4 shows normalized
mass flow and thrust for each turbulence model com-
pared with experimental data. The SST and SA solu-
tions provide the best agreement with the experimental
thrust values. All turbulence models gave very similar
mass flow values and fall slightly below the experimen-
tal values.

Table 3: Nozzle flow conditions

Freestream Nozzle Inflow

Mach No. 0.9 0.2

Total Temp 579.6 R 540.0 R

Total Pressure 14.7 psi 52.15 psi

Static Pressure 8.69 psi 50.74 psi

Table 4: Comparison of normalized massflow and
thrust for various turbulence models. “cc” refers to
the S-A rotation correction.

Mach 0.9,
NPR 6

Normalized
Thrust

Normalized
Massflow

Experiment 0.8625 0.9680

S-A (cc OFF) 0.8615 0.9523

S-A (cc ON) 0.8603 0.9525

SST 0.8639 0.9524

EASM 0.8898 0.9551
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start of the curved portion of the boattail on the top sur-
face, and in the nozzle just forward of where the shock
meets the wall.

Subsequent time-accurate (constant timestepping)
analysis on the Mach 0.9, NPR 4 case using the SST
model indicates that the true unsteadiness is quite less,
and the numerical instabilities associated with using
variable timestepping on a problem with separated
regions leads to an inability to obtain a converged solu-
tion. The initial motivation for attempting time-accurate
calculations was to obtain a more consistent set of
instantaneous flowfield solutions for time-averaging of
the apparent unsteady problem. However, the time-
accurate calculations, with constant time stepping
employed (in contrast to the local time stepping used by
the steady-state solver) enabled a nearly converged solu-
tion to be obtained. While the RANS technique should
be expected to provide a steady-state solution, it appears
that for all of these problems with large scale flow sepa-
rations, the time-accurate solver with constant timestep-
ping is better able to remove numerical instabilities
associated with these large separated flow regions than
the local time-stepping approach of the steady-state
solver. Nevertheless, the SST turbulence model best
predicts the internal and external mean pressure distri-
butions for all cases studied. The Chien k-ε and EASM
k-ε models predict the nozzle internal shock to occur
upstream compared with other model predictions,
resulting in a larger separation region inside the nozzle.
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Figure 3(a):  Computational grid for “Configuration
2” forebody and nozzle structure.

Figure
3(b):
Close-up
view of
the nozzle
exit.

Figure 2: Schematic of NASA Langley experimental rig (forebody/nozzle/support).

Figure
3(c):
Close-up
nozzle
afterbody.
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Figure 5: Mach number contours using the Spalart-Allmaras model at the design NPR of 21.23 and Mach
number 0.9.
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Figure 4: Grid dependence plot of mean Cp values on the external surface for coarse, medium and fine grids.
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Figure 6(a): Mach number
contours for the NPR=4,
Mach 0.9 case highlighting
forebody geometry.

Figure 6(b): Closeup of
nozzle.
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Figure 7(b):  Pressure distribution on the internal surface for the NPR=4, Mach 0.9 case.
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Figure 7(a):  Mean Cp profiles on the external surface for the NPR=4, Mach 0.9 case.

12NASA/TM—2003-212876 



−2.1 −1.6 −1.1 −0.6 −0.1 0.4 0.9
x/D (D=15.24 cm)

0.000

0.005

0.010

0.015

0.020
S.

D.
 o

f C
p

Standard Deviation − External Surface
Mach 0.9, NPR 4

Spalart−Allmaras (cc OFF)
Spalart−Allmaras (cc ON)
SST
EASM
k−e (Cmu ON)
k−e (Cmu OFF)

Figure 8(a): Standard Deviation curves of Cp on the external surface for all turbulence models at NPR=4,
Mach 0.9.
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Figure 8(b):  Standard Deviation curves of p/pt on the internal surface for all turbulence models at NPR=4,
Mach 0.9.
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Figure 9: Streamlines defining the separation region for the Mach 0.9, NPR 4 case. Streamlines start at the
7th gridpoint off the wall in the nozzle throat.  The shaded region indicates the nozzle afterbody structure.
The gray streamlines (with vectors) are reference streamlines.
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Figure 10(a): Cp curves on external surface for Mach 0.9, NPR 4 with the SST model.

Figure 10(b): Normalized pressure (p/pt) curves on internal surface for Mach 0.9, NPR 4 with the SST model.
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Figure 11(a): Standard Deviation curves of Cp on the external surface at Mach 0.9, NPR=4.

Figure 11(b): Standard Deviation curves of p/pt on the internal surface at Mach 0.9, NPR=4.
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Figure 12: Mach number contours at an NPR of 6 and Mach number 0.9 with the Spalart-Allmaras model.
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Figure 13(a):  Mean Cp profiles on the external surface at an NPR of 6 and Mach number of 0.9.
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Figure 13(b):  Mean p/pt profiles on the internal nozzle surface at an NPR of 6 and Mach number of 0.9.
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Figure 14(a): Standard Deviation curves of Cp on the external surface for all turbulence models at Mach 0.9,
NPR=6.
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Figure 14(b): Standard Deviation curves of p/pt on the internal surface for all turbulence models at Mach 0.9,
NPR=6.

Figure 15: Mach number contours at an NPR of 4 and Mach number 1.2 with the Spalart-Allmaras
model.

19NASA/TM—2003-212876 



0.00 0.25 0.50 0.75 1.00
x/D (D=15.24 cm)

−0.20

−0.18

−0.15

−0.12

−0.10

−0.08

−0.05

−0.02

C
p

External Surface Cp Distribution
mean values, Config 2, Mach 1.2, NPR 4

experiment
Spalart−Allmaras (cc OFF)
Spalart−Allmaras (cc ON)
SST
EASM
k−e (Cmu ON)
k−e (Cmu OFF)

Figure 16(b):  Mean p/pt profiles on the internal nozzle surface at an NPR of 4 and Mach number of 1.2.
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Figure 16(a):  Mean Cp profiles on the external surface at an NPR of 4 and Mach number of 1.2.
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Figure 17(b):  Standard Deviation curves of p/pt on the internal surface for all turbulence models at Mach 1.2,
NPR=4.

Figure 17(a): Standard Deviation curves of Cp on the external surface for all turbulence models at Mach 1.2,
NPR=4.
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